Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diabetes Res Clin Pract ; 197: 110565, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2220619

ABSTRACT

Recent studies suggest that extracellular vesicles (EVs) play a role in the pathogenesis of SARS-CoV-2 infection and the severity of COVID-19. However, their role in the interaction between COVID-19 and type 2 diabetes (T2D) has not been addressed. Here, we characterized the circulating EV proteomic and phosphoproteomic landscape in patients with and without T2D hospitalized with COVID-19 or non-COVID-19 acute respiratory illness (RSP). We detected differentially expressed protein and phosphoprotein signatures that effectively characterized the study groups. The trio of immunomodulatory and coagulation proteins C1QA, C1QB, and C1QC appeared to be a central cluster in both the COVID-19 and T2D functional networks. PKCß appeared to be retained in cells by being diverted from EV pathways and contribute to the COVID-19 and T2D interaction via a PKC/BTK/TEC axis. EV-shuttled CASP3 and ROCK1 appeared to be coregulated and likely contribute to disease interactions in patients with COVID-19 and T2D. Predicted activation of AMPK, MAPK, and SYK appeared to also play important roles driving disease interaction. These results suggest that activated cellular kinases (i.e., PKC, AMPK, MAPK, and SYK) and multiple EV-shuttled kinases (i.e., PKCß, BTK, TEC, MAP2K2, and ROCK1) may play key roles in severe COVID-19, particularly in patients with comorbid diabetes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Humans , COVID-19/metabolism , Diabetes Mellitus, Type 2/pathology , SARS-CoV-2 , Proteomics , AMP-Activated Protein Kinases/metabolism , Extracellular Vesicles/metabolism , rho-Associated Kinases/metabolism
2.
Front Immunol ; 12: 617042, 2021.
Article in English | MEDLINE | ID: covidwho-1221946

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, is wreaking havoc around the world. Considering that extracellular vesicles (EVs) released from SARS-CoV-2 infected cells might play a role in a viremic phase contributing to disease progression and that standard methods for EV isolation have been reported to co-isolate viral particles, we would like to recommend the use of heightened laboratory safety measures during the isolation of EVs derived from SARS-CoV-2 infected tissue and blood from COVID-19 patients. Research needs to be conducted to better understand the role of EVs in SARS-CoV-2 infectivity, disease progression, and transmission. EV isolation procedures should include approaches for protection from SARS-CoV-2 contamination. We recommend the EV and virology scientific communities develop collaborative projects where relationships between endogenous EVs and potentially lethal enveloped viruses are addressed to better understand the risks and pathobiology involved.


Subject(s)
COVID-19/pathology , COVID-19/transmission , Containment of Biohazards/methods , Extracellular Vesicles/virology , Endocytosis/physiology , Humans , RNA, Viral/blood , RNA, Viral/genetics , SARS-CoV-2 , Viral Genome Packaging , Viremia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL